
Research Institute for Advanced Computer Science
_NASA Ames Research Center

A Highly Parallel Multigrid-Like
Method for the Solution

of the Euler Equations

Ray S. Tuminaro

Research Institute for Advanced Computer Science
NASA Ames Research Center - MS: 230-5

Moffett Field, CA 94035

RIACS Technical Report 89.59

December 1989

The Research Institute of Advanced Computer Science is operated by Universities Space R.csearch

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between the National

Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USItA).

(HASA-CR-ISRSI6) A HIGHLY PAPALLFL

MULTIGRIO-LIKE METHOD FOR THE SOLUTION OF

THE EULER EQUATIONS (KeSeaFCh Inst. foF

Advancud Computor Science) 1 ° p CSCL 09E

G3167

N92-12_96

Unclds

0O43094

_ _ 2 f

A Highly Parallel Multigrid-Like
Method for the Solution

of the Euler Equations

Ray S. Tuminaro

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.59

NASA Cooperative Agreement Number NCC 2-387

A Highly Parallel Multigrid-llke Method for the Solution of the Euler

Equations

Ray S. Tuminaro"

Research Institute for Advanced Computer Science, NASA Ames

Abstract. We consider a highly parallel multigrid-like method for the solution of the two dimensional

steady Euler equations. The new method, introduced in [4] as _iltering _ multigrid, is simUar to a standard

multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In

the filtering method, however, additional fine grid subproblems are processed concurrently with coarse

grid computations to further accelerate convergence. These additional problems are obtained by splitting

the residual into a smooth and an osdUatory component. The smooth component is then used to form a

coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid

subproblem. The primary advantage in the filtering approach is that fewer iterations are required and

that most of the additional work per iteration can be performed in parallel with the standard coarse grid

computations.

In this paper, we generalize the filtering algorithm to a version suitable for nonlinear problems. We

emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In

particular, no explicit linearization (e.g. formation of Jacobi_ns) needs to be performed (similar to the

FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and

presenting numerical results. Finally, a performance evaluation is made based on execution time models

and convergence information obtained from numerical experiments.

1. Introduction. Multigrid methods are among the fastest algorithms for a wide

variety of problems and are now used in many scientific disciplines. Structurally, the algo-

rithm iterates on a hierarchy of consecutively coarser and coaxser grids until convergence

" This work performed at Research Institute for Advanced Computer Science (RIACS) and was sup-

ported under Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research

Association (USRA).

is reached. While critical to its rapid convergence, the coarse grid computations are more

difficult to parallelize efficiently due to the presence of fewer grid points (and hence less

parailelizable work). We therefore consider a highly parallel multigrid-like method (see

[5,6,7] for other types of highly parallel multigrid-like methods). This new algorithm,

"filtering" (proposed in [4]), uses additional fine grid subproblems to accelerate the con-

vergence of the overall process. More specifically, these fine grid problems are created by

splitting the residual into a smooth and an oscillatory component. The smooth component

is used to form a coarse grid problem (similar to standard multigrid) while the oscillatory

component is used for the fine grid subproblem. The primary benefit to this approach is

that while more work per iteration is necessary, fewer iterations are required and more

of the work within an iteration is parallelizable. In fact, if the additional work can be

performed concurrently with coarse grid computations, the CPU time per iteration need

not rise significantly.

In this paper, we generalize the filtering algorithm into a version suitable for nonlinear

problems. This new algorithm is conceptually straight-forward and relatively easy to

implement. In particular, no explicit linearization (e.g. formation of Jacobians) needs to

be performed (similar to the FAS multigfid approach). We apply the nonlinear version

to the solution of the Euler equations (see [4,10] for convergence analysis of the filtering

algorithm for linear model problems). Specifically, we consider the filtering approach

applied to the FLO52 algorithm. FLO52, written by Antony Jameson [8], is a well-

known multigrid code for the solution of the Euler equations describing transonic flow

past an airfoil. The corresponding FLO52-Filtering algorithm is similar to the original

FLO52 with the exception of the additional subproblems. We begin our description of the

algorithm with discussions of both the standard and filtering multigrid methods applied

to Linear problems in Section 2, and Section 3. The generalization of both the standard

multigrid and the filtering approach to nonlinear probhms is then discussed in Section 4

and Section 5. We conclude by comparing the convergence of the filtering and standard

FLO52 algorithms on a fluid calculation. Based on these numerical experiments as well

as a mathematical execution time model, we make some predictions on the performance

of the FLO52-Filtering algorithm on massively parallel computers.

2. Standard Multigrld Algorithm. We begin our discussion with a brief sketch

of the standard multigrid algorithm applied to linear elliptic partial differential equations

2

(PDE's). More complete introductorymaterial on multigridmethods can be found in

[3,9].

Assume thata givenellipticpartialdifferentia]equation isapproximated by a discrete

setofequations (finitedifferencesor finiteelements):

(1) Alu = b,

where A1 is a matrix, b is a vector, mad u is a vector of unknowns for which we seek the

solution. One iteration of a simple multigrid ('V' cycle) method consists of the following

steps:

• relaxation iterations (e.g. Jacobi or SOR methods),

• formation of a correction equation for the error in the current approximation,

• projection of correction equation onto a coarser grid,

• 'solution' of coarse grid system,

• interpolation and addition of correction to previous approximation.

A key feature of this procedure is that the solution to the coarse grid equations can be

approximated using the multigrid idea recursively. Thus, the general algorithm consists

of processing on a hierarchy of coarser grids (each processed in turn). We summarize this

multigrid algorithm with a pseudo-code fragment in Fig. 1.

For the most part, analysis of the two-level multigrid method reveals the general

behavior of the multiple grid version. If we denote the projection operator by R1, the

interpolation operator by P1, the relaxation iteration operator by G, and the coarse grid

difference operator by A2, we can express the two-grid iteration operator,

(2) e (k+l) = Te (k),

by

(3) T = (A_ 1 - PIA_IR1)A1G,

where e(k) denotes the error after k iterations. In the next section, we will contrast this

two-grid operator with that of the two-level filtering method.

3. Filtering Algorithm. Conceptually, the filtering algorithm is similar to the stan-

dard multigrid method, the primary difference being that two correction equations are

proc Multigrid(Ai, b, u, level)

{

if (level = CoaxsestLevel) then u = A71b

else

PreRelax(Ai, b, u,level)

ComputeResidual(b, u, level,residual)

ProjectResidual(level,residu al,coaxse_residuul)

Multigrid(Ai+l ,coarse_residuul,v,level+ 1)

Interpolate(level,v,correction)

u = u+correction

endif

• Simple 'V' cycle muitigrid algorithm.

formed after the relaxation iterations. Specifically, let ul denote an approximate solution

to the linear equation

(4) AlU = b.

Within a standard multigrid method, a correction equation is usually formed by computing

the residual (r = b- A1 ul) and using this as the righthand side to a new equation. Within

the filtering algorithm, however, two subproblems axe created by splitting the residual into

the two components:

(5) rl=Zr and r2=r-rl

which axe then used as righthand sides in

(6) Alc (1) = rt and Alc (2) = r2.

To approximate the solution of the first subproblem, the equation is projected onto a

coarser grid as within a standard multigrid method• The error associated with this ap-

proximation (solving the coarse problem exactly) is

(7) el = (A_ _ - P1A_IR1)rl,

4

proc FilterMultigrid(Ai, b,u, level)

if (level = CoarsestLevel) then u = A71b;

else

PreRelax(b, uJevel);

ComputeResidual(Ai, u, b, level, res);

SplitResidual(res,rl, r2);

ProjRes(rl,_l);

FilterMultigrid(A_+I, _1, ill, level+ 1);

Interpolate_and_add(ill, u2, level, u);

endif

ConcurrentRelax(A;,r2,u2,level+I);

• V cycle version o] the filtering algorithm.

where A2 is the coarse grid operator. To approximate the solution of the second problem, q

relaxation sweeps are performed on the fine grid. The error for this second approximation

is given by

(S) e2 ----SqAllr2,

where S is the iteration operator of the concurrent relaxation method and we have as-

sumed that the initial guess is zero. Thus, the two level algorithm generates one coarse

grid correction (as in standard multigrid method) and one additional fine grid problem to

be processed by relaxation iterations. Once again, a multiple grid version of the method

can be defined by recursively using the filtering procedure to 'solve' the coarse grid sub-

problems. This multilevel version is summarized in Fig. 2.

Finally, an iteration operator for the two-level version of this algorithm is obtained

by combining (7) and (8):

(9) e (k+l) = [(A11 - P1A_IR1)Z -f SqA_I(] - Z)]A1Ge (k),

where we have included the possibility of performing one prerelaxation sweep with iteration

operator G. That is,

(10) r = A1Ge (k).

Notice that when the operator Z is the identity matrix, (9) is identical to (3).

5

q] p(Ty)

1. .498

2. .268

3. .230

4. .205

Convergence rates of filtering algorithm corresponding to a 32 x 32 grid.

Intuitively, the S_ term in (9) damps the high frequencies while the coarse grid cor-

rection damps the low frequencies. A critical element affecting the convergence behavior

of the filtering algorithm is the properties of the splitting operator, Z, used for computing

rl and r2. For the most part, this operator should decompose the residual so that high

frequency errors remain on the fine grid while low frequency errors are projected on to the

coarse grid subproblem. This can be accomplished by choosing art operator which filters

out high frequencies in the residual. Many choices are possible. In this paper, we consider

only the operator

(II) Z = P1R1.

This corresponds to first projecting the residual onto the coarse grid and then interpolating

back to the fine grid. See [4] for an alternative filter.

A detailed convergence analysis (via. Fourier transform on the iteration operator)

of a two-level filtering algorithm applied to the Poisson equation can be found in [4,10].

Using this analysis, it is possible to determine convergence rates for the filtering method.

Table 1 lists the spectral radius of the two-grid iteration operator as a function of q when

the algorithm is applied to the Poisson equation:

(12) urx + uuu - f.

The algorithm depicted uses full-weighted restriction, given by the stencil

(13)
1 2 1)
2 4 2

1 2 1

bilinear interpolation, one Jacobi prerelaxation sweep, q concurrent relaxation iterations

of damped-Jacobi with damping parameter equal to 4/5, and the exact solution of the

6

coarsegridequations. Finally,discretizationisobtained via centraldifferenceson both

the finegrid (32 x 32) and the coarse grid (16 x 16). We note that by comparison,

the correspondingstandard multigridmethod using one damped Jacobi relaxationsweep

(withoptimal damping parameter) has a spectralradiusof .570.Thus even with only one

concurrentrelaxationsweep, the convergence rateisaccelerated.

4. FAS-Multigrid Method. To apply the multigridmethod to a nonlinearprob-

lem, the simple scheme describedin Section 2 must be modified to implement the FAS

algorithm. For the most part,these modificationsensure that the correctionequations

correspond to physicallymeaningful subproblems. To describethe algorithm,we consider

the nonlinearsystems

(14) Ak(u) =A

arising from discretization of a partial differential equation on grid Gk (where k = 0

corresponds to the finest grid). We write one iteration of the relaxation scheme Gk as

(15) uk _ Ilelax(uk, fk).

Once again, let Rk denote projection from grid k to grid k + 1. Similarly, let Pk denote

interpolation from grid k to grid k - 1. Then the coarse grid subproblem is defined as

follows. The initial guess on the coarse grid is given by

(16) uk+l *'- Rkuk.

On the finest grid f0 corresponds to the discretization of the continuous righthand side.

The righthand sides on the coarser meshes axe recursively defined by

(17) h+l '-- Ak+l(uk+l) - Rkrk,

where

(18) rk h- Ak(k).

Finally, after the solution on the coaxse grid is improved (either by relaxation or recursively

applying the multigrid procedure) the solution on the fine grid is corrected by

(19) uj, _ uk + Pk+1(u_;+l - Rku_,).

7

Below we summarize a two-gridversionof the algorithm using one relaxationsweep

on each gridlevel:

uo _ Relax(uo,fo)

Ul 4-- RoUo

o '-.5- A(ul)

.fi,--A_(u_)- Ro,'o

ul _ Relax(ul, fl)

uo ,- uo+ P1(ul- R.ouo).

For more than two grids, the algorithm is recursively defined by replacing

Ul '-- Relaz(ul, .fi)

with

Ul = result of FAS algorithm starting on Ga.

Notice that when this method is applied to a linear problem, it is mathematically identical

to the method described in Section 2. See [2] for more on the FAS procedure.

5. FAS-Filtering Algorithm. Similar to the FAS algorithm, the filtering algorithm

must be modified so that the all subproblems are physically meaningful. To describe the

method, we consider the discrete nonlinear systems defined by (14):

(20) ak(u) = fk.

Similar to the FAS scheme, a coarse grid subproblem is created after relaxation on Gk by

first computing the residual on that level. However, in the filtering version this residual

is further split into two components and then the smooth component is used in forming

the coarse grid subproblem. That is,

(21) rk = fk - Ak(uk), _k = Zrk, and _k = rk -- _k.

The formation of the coarse grid subproblem proceeds in a similar fashion to that of

a standard FAS algorithm with the exception that _k is used instead of rk. That is, the

initial guess on Gk+_ is

(22) uk+l = Rkuk,

8

and the righthand side of the coarse grid equations are recursively defined by:

(23) fk+l = Ak+l(uk+l) - Rkf'k.

In addition to the coarse grid subproblem, a fine grid problem is created

(24) Ak(ik) = fk,

which can be processed concurrently with the coarse grid problem. The righthand side of

this fine grid subproblem is defined by

(25)]k = Ak(_k)+ _k,

and the initial guess to this system is taken to be uk. Similar to the filtering algorithm

described in Section 3, a relaxation scheme is used to improve the approximation to (24).

Finally, after the approximations to the coarse grid and fine grid subproblems have been

improved, the solution of the original problem is corrected by

(26) uk _ uk + Pk+l(Uk+l -- Rkuk) + (ilk -- uk).

Below we summarize the two-grid version of the algorithm using one prerelaxation sweep,

one concurrent relaxation sweep on the fine grid, and 1 relaxation sweep on the coarse

grid:

Uo _ Relaz(uo, fo)

to .-- f0 - Ao(uo)

_o '-- Zr0 % *-- uo

ul ,- Rouo _o *-- ro- _o

£ _ AI(ul) - Ro_'o]o _ A0(fio) + ro

1 *- Rel(_l,fl) _o *- Rel_X(io,£)

uo *-- _o + Pl(ul - RoU0) + (_o - Uo).

In the above pseudo-code fragment, independent parts of the two subproblems appear

in separate columns.

replacing

A multilevel version of the above algorithm can be obtained by

_1 "- Relax(_l,fl)

9

with

ul = result of FAS-Filtering algorithm starting on _I.

One can easily verify that when the operators Ai are linear, the FAS-Filtering method is

mathematically identical to that described in Section 3.

It is important to realize the relative simplicity of modifying an FAS method to

implement the FAS-Filtering algorithm. One advantage is that no linearization is needed.

Only the splitting operator and the concurrent relaxation operator must now be developed.

For the concurrent relaxation one can use the same (or a similar) routine as for the

prerelaxation. Additionally, no additional work is required to implement the splitting

operator if

Z = PkRk

is used as these operators are already defined for the interpolation and restriction. In

fact, the only aspect of the filtering algorithm that requires nontrivial modification are

the routines necessary for the allocation of subproblems to different processors.

6. FLO52 and the Euler Equations. We consider both the FAS and the filtering

schemes applied to the Euler equations. We begin by describing the Euler equations and

the FLO52 code.

The FLO52 algorithm written by Antony Jameson solves the two-dimensional steady

Euler equations describing flow around an airfoil. It is widely used in research and in-

dustrial applications throughout the world. It produces good results for problems in its

domain of application (steady inviscid flow around a two-dimensional body), and converges

rapidly.

We briefly describe the Euler equations and the FLO52 scheme (see [8] for more on

FLO52). We begin with the unsteady time-dependent two-dimensional equations written

in conservation integral form as

(2Z) d//w+fn'F=O

where n is the outward pointing normal on the boundary of the region. The variable to is

the vector of unknowns

(28) w = (p, pu, pv, pE) T,

lO

where p is density, u and v are velocity components directed along the x and y-axes,

respectively, and E is total energy per unit mass. The function F is given by

(29)

where

F(w) ,--- (E(w),F(w)),

E(w) = pu2+ p,puv,pull) T,

F(w) = (pv, puv, pv _ ÷ p, pvH) T.

Here p is pressure, and H is enthalpy. These are defined by

p - (-y - 1)p[E - (u 2 -{-v2)/2],

H - E ÷ p/p,

where "), is the ratio of specific heats. The integral relation given by (27) expresses con-

servation of mass, momentum, and energy which is to hold for any region in the flow

domain.

To produce a numerical method based on (27), the flow domain is divided into quadri-

laterals. On each quadrilateral of the domain, the double integral in (27) is approximated

by the centroid rule and the line integral is approximated by the midpoint rule. For nu-

merical stability, a dissipation term which is a blend of second and fourth-order differences

is added.

A simple iterative method (such as the Jacobi algorithm) for the steady-state problem

can be viewed as a time-marching method for the time-dependent equations (27). After

spatial discretization, the equations form a system of ordinary differential equations

(30) d'-'t -t" Al(w) = O,

where AI() denotes the nonlinear finite-difference operator corresponding to differencing

of spatial derivatives. Thus for the steady-state solution, we are interested in solving

(31) A,(w) = O.

The application of both the FAS multigrid and filtering algorithms to this problem is

relatively straight-forward. We conclude this section with a description of the relaxation

11

(32)

methodusedwithin the algorithm. Specifically, it is a general multistage Runge-Kutta-like

method. Such a procedure can be written in the form

w (°) -- wn

for k = 1 to m

k-1

w (k) = w (°) - At __, akjA;(w (i))
j----O

I/)n+ 1 ---_ W(rn)

where At, the time step, and akj are chosen so that the procedure converges rapidly.

Finally, we note that a number of acceleration techniques are used to improve this Runge-

Kutta scheme [1,8] which we do not discuss in this paper.

7. Algorithmic Choices and Operation Counts. To compare the performance

of the filtering approach to a standard FAS multigrid procedure, we modified the FLO52

algorithm to implement the procedure described in the previous section (denoted FLO52-

Filtering) on a serial machine. Using these codes, we compare the number of iterations

required for convergence using FLO52 and FLO52-Filtering. Since the code was not

implemented on a parallel machine, operation counts are made for both algorithms so

as to compare the time per iteration of both approaches. Additionally, the operation

counts were used to determine the number of concurrent iterations that can be performed

in parallel with the coarse grid correction. In this section, we describe the algorithmic

choices and briefly discuss the corresponding floating point operation counts for each of

the FLO52 algorithms.

The operators used in our experiments are those that are typically used within the

FLO52 code. Specifically, the Runge-Kutta relaxation scheme described in the previous

section is used for prerelaxation and concurrent relaxation. Bilinear interpolation, and

full-weighted restriction are used to transfer values between grids. The coarse grid contains

one fourth as many points as the fine mesh. Coarse grid operators are defined using the

same discretization scheme as on the fine grid. Finally, as discussed in Section 3, the

operator Z which splits the residual in the filtering algorithm is given by

(33) Z = PkRk.

This corresponds to projecting the residual onto the coarse grid and then interpolating it

to the fine grid.

12

ci on 80 using 8192 processors

cion &lusing4096 processors

gzusing

cion gson 256 processors

. Riustrotion of the subproblems (and processor allocation) for a 5.level filtering method.

To estimate the time per iteration of the FLO52 and FLO52-Filtering algorithms,

we make a number of assumptions. The first is that the time for communication is

negligible. 1 The finest grid contains 256 × 64 points and that each grid point is assigned

to one processor. This implies that many processors are inactive when processing coarser

meshes in the FL052 procedure. In particular, each successively coarser grid contains one

fourth as many points as the previous grid. Thus, the number of idle processors when

processing on _k is given by

I k

(34) e(1 - _),

where P is the total number of processors. For the FLO52-Filtering algorithm, we assume

that these inactive processors are used for the concurrent iterations. By way of example,

Fig. 3 illustrates the different subproblems in a FLO52-Filtering algorithm using 5 grid

levels. In the figure, the darker boxes correspond to the standard multigrid 'V' cycle.

Within each box compromising the 'V' cycle, the grid on which processing occurs is

indicated. Each element of the first half of the 'V' cycle (except for the coarsest grid)

spawns a concurrent iteration problem. This is indicated by the lighter boxes which are

1 Since the two multigrld schemes that we compare have similar communication requirements, the

relative performance of the two algorithms should not be highly sensitive to the communication times.

13

#

.

2.

3.

Floating Point Operations

FLO52 FLO52-Filtering

309 316

526 532

742 749

A comparison of the maximum number o]flooting point operations performed by any processor for FL05$

and FLO5_.Filtering as a function of the number of perrelaxation iterations,#.

labelled 'ci'. Finally, we assume that for each element of the 'V' cycle calculation, one grid

point is assigned to each processor. The processors assigned to each concurrent relaxation

subproblem are indicated on the figure. 2

The operations per iteration of each algorithm are estimated using a timing model

developed for an actual hypercube implementation of FLO52 (see [1]). In Table 2, we give

the operation counts corresponding to a 5 grid version of the two methods as a function

of the number of prerelaxation Runge-Kutta sweeps,p, that are performed. Notice that

the filtering algorithm is more expensive, primarily due to the additional costs of splitting

the residual into two components.

In addition to computing the time per iteration, we use the operation counts to

determine the number of concurrent relaxation iterations that can be performed in parallel

with the coarse grid correction. That is, the maximum number of concurrent relaxations

that can be completed during the coarse grid correction is given by:

[time for coarse .grid correction for ._]
(35) # concurrent iterations on _Tk= floor [time for one fine grid relaxation on GkJ "

In this way, we ensure that the concurrent iterations do not increase the overall time per

iteration of the algorithm. In Table 3, we give the number of concurrent iterations that can

be performed for each subproblem in Fig. 3 as a function of the number of prerelaxation

used, #.

8. Performance Comparisons. A series of convergence experiments were run on

a serial machine to evaluate the numerical properties of both the FLO52 and the FLO52-

filtering code. For the most part, the relative performance of the two algorithms was

2 Notice that for the concurrent iteration problem on grid Go, each processor contains two grid points.

This is because there are not enough processors available to assign one processor for each grid point.

14

\grid

.

2.

3.

_0 {71 {72 {73

2 3 2 1

4 6 4 2

6 9 6 3

Number of concurrent iterations performed for each subproblem in Fig. 3 as a function of the number of

Runge.Kutta prerelaxation sweeps, _.

1.

2.

3.

FLO52 FLO52-Filtering

75

39

26

42

26

20

Comparisons of multigrid iterations Jar the FL05_ and FLO5$.filtering algorithms where iterations corre-

sponds to the total (including I, P.,S, ._, and 5 level multi#rid iterations).

fairlyconsistantfor differentgridsand over a range of MACH numbers. In thispaper,

we present resultsobtained from runs on a 256 × 64 grid. For these experiments an

angle of attackof .2and a MACH number of .8was chosen. As previouslymention, a 5

levelmultigridscheme isused. The computation startson the coarsestlevel,{74,using

justrelaxationuntilthe norm of the residualis reduced below 10-2. This solutionis

interpolatedto {73where a multigridprocedure isused to reduce the norm of the residual

to 10-4.The processesisrepeated forgrids:{72,{71and {7oreducing the residualnorm to

10-s,10-6, and 10-9 respectively.In Table 4,we presentour resultsforthisproblem using

differentnumbers ofprerelaxationsweeps (/_)within the multigridscheme.3 As the table

illustrates,the number of iterationsrequiredfor the falteringalgorithm is significantly

lessthan the number of iterationsfor the standard method. It should also be noted

that the relativesavingsin using the filteringapproach over the standard approach is

reduced when more prerelaxationisused. This isto be expected as the primary function

of the new subproblems isto reduce high frequencyerrorsin parallelwith the coarsegrid

correction.However, when many prerelaxationsweeps areperformed (beforeforming the

new subproblem), the high frequency errorissignificantlyreduce beforethe coarsegrid

3 These results are representative of &number of different runs using different grid sizes, Mach no., and

angle of attack.

15

correction begins. 4 Finally, we remark that it may be possible to boost the performance of

the filtering method further by the use of more sophisticated operators. For example, the

pre and concurrent relaxation operators use the identical Runge-Kutta coefficients that

are used within the standard FLO52 scheme. These coefficients were specially chosen for

the FLO52 method. Thus, improvements may be possible if a new set of coefficients is

chosen for the new method. Likewise, a more carefully chosen splitting operator, Z, may

also yield significant improvements.

9. Conclusion. We have presented an FAS version of the filtering method. The

principle idea is to use processors that would otherwise be idle in a standard multigrid

method to perform relaxation iterations. These additional iterations are performed on

subproblems which are created by splitting the residual into 'smooth' and 'oscillatory'

components. The 'smooth' component is used for the coarse grid correction, while the

'oscillatory' component is used for the new subproblem. By using these otherwise idle

processors, a filtering iteration need not cost significantly more than standard multigrid

iterations. Additionally, we remark that the modifications necessary to implement a ill-

tering algorithm from an FAS algorithm are relatively straight-forward. This is primarily

because no linearization of the operator is necessary,

We have applied the filtering approach to the FLO52 algorithm for solving the steady

2-dimensional Euler equations. Based on numerical experimentation, it has been deter-

mined that this filtering method requires fewer iterations than the standard method, and

consequently, it is an attractive alternative on parallel computers.

4 An alternative filter which distributes more of the middle frequency errors on the fine grid subproblem

may yield better performance.

16

[7]

IS]

[9]

[lO]

REFERENCES

[1] , Performance of a Parallel Euler Equation Code On Hypercube Computers, Tech. Rep., NASA Ames,

Moffett Field, Ca, To appear 1989.

[2] , Multi-level adaptive solutions to boundary.value problems, Math. Camp., 31 (1977), pp. 333-390.

[3] , Multigrid Tutorial, SIAM, Philadelphia, 1987.

[4] , Design and implementation of parallel multigrid algorithms, in Proceedings of the Third Copper

Mountain Conference on Multigfid Methods, S. McCormick, ed., Marcel Dekker, NY, 1987,

pp. 101-115.

[5] Constructive interference in parallel algorithms, SIAM Journai on Numerical Analysis, 25 (1987),

pp. 376-398.

[6] Parallel superconvergent multigrid, in Proceedings of the Third Copper Mountain Conference on

Multigrid Methods, S. McCormick, ed., Marcel Dekker, NY, 1987, pp. 195-210.

A new approach to robust multi-grid methods, in First International Conference on Industrial and

Applied Mathematics, Paris, 1987.

Solution of the euler equations for two dimensional transonic flow by a multigrid method, Appl.

Math. and Camp., 13 (1983), pp. 327-335.

Multigrid methods for partial differential equations, in Studies in Numerical Analysis, G. Golub,

ed., 1984, pp. 270-318.

Multigrid Algorithms on Parallel Processing Systems, PhD thesis, Stanford University, 1989.

17

